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ABSTRACT: Two tall geosynthetic-reinforced soil (GRS) walls, one 16.7 m high supporting a

sloped embankment, and the other 21.1 m high with a level backfill, were constructed to support

the taxi way of Mt. Fuji Shizuoka Airport, Shizuoka Prefecture, Japan, which was opened to

service in June 2009. As only limited residual deformation during service is allowed and high

stability is required, the backfill was a well-graded gravelly soil, which was well compacted at

controlled water content and reinforced with geogrid reinforcement. In the respective walls, three

representative geogrid layers were fitted with a number of electric-resistance strain gauges to

monitor the geogrid tensile strains during and after construction to ensure high stability and

sufficient serviceability. After the wall construction had been completed, the geogrid strains were

either only increasing at a very low rate, or had stopped increasing, or had started decreasing. A

series of in-air tensile loading tests were performed on different geogrid types used for the wall

construction to evaluate their elasto-viscoplastic properties. The time histories of tensile force in

the geogrid layers were estimated from the measured time histories of the geogrid strains based

on a non-linear three-component rheology model using the model parameters determined by the

in-air tensile loading tests. After the end of wall construction, the estimated geogrid tensile force

was either increasing at a very low rate or was decreasing with time. Even at the locations

where it tended to increase with time, the estimated geogrid tensile force never increased greatly

by the end of a typical design life (i.e. 50 years) from the value at the end of wall construction.

As the estimated maximum geogrid force at the end of the design lifetime is substantially lower

than the respective design tensile rupture strengths, it is estimated that creep rupture failure of

the geogrid is utterly unlikely. The analysis suggests that these estimates are also relevant when

the lifetime is 100 years. The framework to estimate the time histories of reinforcement force

from the time histories of measured reinforcement strains used in this study can be applied to

other similar cases.
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1. INTRODUCTION

A number of permanent geosynthetic-reinforced soil

(GRS) structures, including retaining walls (RWs), bridge

abutments, steep-sloped embankments, dykes and earth-

fill dams and fills supporting shallow foundations, have

been constructed. The popularity of this technology is due

mainly to cost-effectiveness resulting from rapid construc-

tion, a relative small construction space requirement, the

use of a substantially smaller amount of concrete and

steel, and high post-construction performance including

high seismic stability (e.g., Tatsuoka et al. 1997, 1998,

2007; Koseki et al. 2006; Latha and Krishna 2008).

Despite the use of so-called extensible reinforcement (i.e.,

polymeric geosynthetic reinforcement), as far as the

authors know, there is no reported case of ordinary

permanent GRS structures that have deformed excessively

due to too much creep deformation, or have collapsed due

to creep having caused rupture of the polymeric geosyn-

thetic reinforcement. This may be due mainly to the

following two causes. First, the actual safety factor against

failure of a given GRS structure under static loading

conditions is considerably higher than unity when ade-

quately designed against seismic loads. The safety margin

under static loading conditions becomes larger as the

design seismic load becomes greater. Second, there are

several hidden conservatisms in the design, including the

following situations.

1. The shear strength of the backfill used in the design

may be considerably lower than the true peak shear

strength, in particular when good backfill is well-

compacted (as in the cases of ordinary permanent

important GRS structures) (e.g. Tatsuoka 2008,

2009).

2. The positive effects of suction in unsaturated

backfill, which could be significant during dry

seasons or even during wet seasons when an effective

drainage system is provided, are usually ignored in

design to prepare for the worst rainfall condition

anticipated during a given lifetime where the positive

effects of suction may be lost.

3. The tensile strength of polymeric geosynthetic

reinforcement used in design is obtained by

significantly reducing the strength measured in fast

tensile tests on the new products using a relatively

large creep reduction factor. This procedure is

adopted to remove the possibility of creep rupture

failure by considering that polymeric geosynthetic

reinforcement generally exhibits highly rate-depen-

dent behaviour due to its viscous properties (e.g.

Hirakawa et al. 2003; Kongkitkul et al. 2004,

2007a). In this respect, it seems that the current

design concept is rather conservative for ordinary,

properly designed and constructed GRS walls (e.g.

Tatsuoka et al. 2004, 2006; Tatsuoka 2008). The

creep reduction factor is applied after the strength

has been reduced by applying not only an installation

damage factor but also a material degradation factor.

In particular, it is assumed that geosynthetic

reinforcement only starts exhibiting creep deforma-

tion after the full negative effects of material

degradation (chemical and/or biological) have oc-

curred by the end of the prescribed lifetime.

Kongkitkul et al. (2007d) showed that this is a

conservative assumption. In reality, creep deforma-

tion and degradation take place simultaneously. As a

result of these procedures, the design tensile rupture

strength becomes significantly lower than the initial

strength determined by fast tensile loading tests on

the new products. Having included all the factors for

conservation identifed above, it is usually very

unlikely that any creep failure of the geosynthetic

reinforcement will take place in a given GRS

structure at the actual working load by the end of the

prescribed lifetime.

With respect to factor 3 above, it is assumed in the

current design that the tensile force activated in the

geosynthetic reinforcement is kept constant throughout the

prescribed lifetime of a given GRS structure. However, the

backfill is also an elasto-viscoplastic material, similar to

the polymeric geosynthetic reinforcement. Therefore, the

backfill may exhibit creep deformation in the longitudinal

direction of reinforcement, either in compression caused

by confining pressure activated by the tensile force in the

reinforcement, or in extension caused by unstable defor-

mation of the wall, or both. Kongkitkul et al. (2007b, c, e;

2008a) performed a series of plane strain compression

(PSC) tests on specimens comprising geosynthetic-rein-

forced sand to investigate the interaction mechanism

between sand and geosynthetic reinforcement. To this end,

the time history of the tensile force activated in the

polymeric geosynthetic reinforcement was evaluated from

measured time histories of geosynthetic reinforcement

strain. They showed that, under a constant working load at

the boundary of the specimen that is sufficiently lower

than the collapsed load, the tensile force of geosynthetic

reinforcement may decrease with time. If this phenomenon

takes place with a given full-scale GRS structure, this

factor becomes another hidden conservatism in the design

of the GRS structure.

Mt. Fuji Shizuoka Airport in Shizuoka Prefecture in

Japan was opened to the public in June 2009. For this

airport, two high geosynthetic-reinforced soil (GRS) walls

(16.7 and 21.1 m high) were constructed (Figure 1;

Fujinami et al. 2007, 2009; Fujita et al. 2007; Takagi et

al., 2007). These two high GRS walls were constructed in

two valleys to preserve the natural environment, which

consisted of forests and swamp areas in front of the walls

and which would be buried in the backfill if gentle-sloped

embankments were constructed. Continuous monitoring of

the tensile strains in three representative geogrid layers in

the respective walls during and after construction provided

an excellent opportunity to determine whether the current

design method is very conservative with respect to the

tensile force activated in the geogrid, whether excessive

creep deformation and creep rupture of the geogrid is or is

not likely to take place, and more specifically whether the
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tensile force mobilised in the geogrid is kept constant after

the end of wall construction in field full-scale cases.

In this study, the time histories of the tensile force

activated in six (in total) geogrid layers in these two GRS

walls were evaluated from the measured time histories of

the geogrid tensile strain. The time histories of the geogrid

force by the end of a lifetime equal to 50 years, which is

typical of ordinary civil engineering structures, were then

predicted by extrapolating the time histories of the geogrid

tensile strains that were measured up to the current stage
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Figure 1. Two high GRS walls constructed for Mt. Fuji Shizuoka Airport: (a) back view; (b) a view from the crest during

rainfall, before vegetation of the wall face; (c) cross-section of the wall in valley 1; (d) front view; and (e) cross-section of the

wall in valley 2 (modified from Fujita et al. 2008)
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(when this paper was prepared). These analyses were

performed based on a non-linear three-component elasto-

viscoplastic model that has been validated as being able to

properly describe the rate-dependent load–strain behav-

iour of a number of different types of polymeric geosyn-

thetic reinforcement (e.g. Hirakawa et al. 2003;

Kongkitkul et al., 2004, 2007a, d; Kongkitkul and

Tatsuoka 2007). The analyses indicated that, even at the

most severely loaded locations of the geogrid layers

among those analysed, the tensile force had increased only

slightly from the initial value at the end of wall construc-

tion. The estimated maximum geogrid tensile force was

significantly lower than the design tensile strength (i.e. the

value after having been reduced from the fast loading

strength of new products by using a creep reduction

factor). At the other locations where the tensile strains

were kept nearly constant or even noticeably decreased

with time, even the tensile force had decreased with time,

or the geogrid was exhibiting even unloading. It was

estimated that the possibility of excessive tensile deforma-

tion and creep rupture of the geogrid by the end of the

typical lifetime (50 years) was very low for these two

walls. Part of the analyses presented in this paper has been

reported by Kongkitkul et al. (2008b) and Tatsuoka

(2008).

2. CONSTRUCTION AND
PERFORMANCE OF THE WALLS

Figures 1(c) and (e) show the cross-sections of the two

walls. As the walls support the west side of the taxi way

of the airport, it is necessary to ensure small residual

displacements at the crest of the walls during service. A

sufficiently high stability during severe earthquakes and

heavy rainfall is another important design factor. More-

over, to maintain the natural environment in front of the

walls which was to be preserved by the construction of the

walls, planting of vegetation on the wall faces was

required. To satisfy these requirements, well-graded grav-

elly soil, which was retrieved from a nearby ancient river

bed (Figure 2) and consisted of round gravelly particles

and sub-angular smaller particles, was selected for use as

the backfill. Figure 3(a) shows representative compaction

curves obtained by compaction tests using compaction

energy that was 4.5 times higher than the standard Proctor

(i.e., the modified Proctor) performed for field compac-

tion control. The backfill in the two walls was compacted

to lifts with a thickness of 30 cm, which is a half or one-

quarter of the basic vertical spacing between the major

geogrid reinforcement layers (60 or 120 cm), by using

10 tonf-class vibratory compactors. Figure 3(b) shows the

distributions of the degree of compaction of the backfill

(i.e. the ratio of the field dry density measured by the

radio isotope method for every area of 1000 m2 to the

respective values of the maximum dry density by the

modified Proctor; Figure 3(a)). As seen from Figure 3(b),

the backfill was compacted very well to an average degree

of compaction greater than 95%. The water content during
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of the backfill used to construct two GRS walls for Mt. Fuji
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compaction was controlled to be close to the optimum

(Figure 3(c)). Effective drainage systems were arranged

inside and at the base of the backfill in the two walls. To

acieve this, a network of perforated drainage pipes,

covered with a non-woven geotextile, were buried along

the boundary between the fill (i.e., the backfill of the

walls and the embankments behind) and the existing

ground. In addition, horizontal drainage geosynthetic

strips (5 mm thick 3 300 mm wide) were arranged inside

the embankment per 3 m2 of wall face area (Figure 1(e);

Fujinami et al. 2009). A zone of crushed stone gravel

immediately behind the wall face was also arranged to

smoothly drain water collected by the horizontal drainage

strips as well as water from the wall backfill and embank-

ment. At the centre and the bottom of the wall face, where

the water is finally discharged from the wall, mat gabions

and crushed stone gabions were arranged to prevent

scouring. It may be seen in Figure 1(b) that water is being

discharged from the outlet of the central main drainage

pipe arranged along the centre-line of the wall during

rainfall.

The geogrid made of Aramid fibre coated with HDPE

was used to reinforce the backfill. Figures 4(a) and (b)

show the tensile loading test on one product of this type

of geogrid performed by Hirakawa et al. (2003) and

Figure 4(c) shows a typical test result from which the

viscous property was evaluated. In addition, Figure 4(d)

shows the simulated result of Figure 4(c) by a non-linear

three-component model (explained later). Figures 1(c) and

(e) and Figures 5(a) and (b) show the details of the

arrangements of geogrid reinforcement in the two walls.

Seven different types having different densities of Aramid

fibre and therefore different design rupture strengths TA
ranging from 20 to 87 kN/m were used. Generally,

stronger geogrids were arranged at lower places in the

walls. The properties of the three representative geogrid

types on which electric-resistance strain gauges were

attached in the two walls are listed in Table 1. For a length

of 1.5 m from the wall face, relatively weak secondary

geogrid layers were additionally arranged at the mid-

height between the upper and lower adjacent major

geogrid layers to enhance better compaction of the back-

fill and to increase the stability of the backfill zone

immediately behind the wall face. The wall face was

protected by using 60 cm-high L-shaped galvanized ex-

panded-metal mesh facing units (Figure 6). The major
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Figure 4. (a) Tensile loading device with a geogrid specimen of Aramid fibre (the average rupture strength from many tests on

new product at a strain rate of 1 %/min 56 kN/m); (b) a typical ruptured specimen; (c) load–strain curve in which the strain

rate was stepwise changed and sustained loading test was performed (note: the rupture strength in this test is slightly lower

than 56 kN/m due to a variance of product, keq: elastic stiffness); and (d) simulation by the three-component model (modified

from Hirakawa et al. 2003)
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(modified from Fujinami et al. 2007; Fujita et al. 2007; Takagi et al., 2007)

Table 1. Strength properties of three representative geogrid types used to construct the walls

Geogrid

type

Ultimate tensile strength

(strain rate ¼ 1 %/min) (kN/m)

Design tensile strength TA (after applying

creep reduction factor, 1.6)� (kN/m)

Layer no. (see Figures 5(a) and (b)

16.7 m high wall 21.1 m high wall

G-100 95 59 21 13

G-120 112 70 5 23

G-150 140 87 13 3

�Installation damage factor ¼ 1.0; and durability reduction factor ¼ 1.0.
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geogrid reinforcement layers were connected to the bottom

part of the facing unit. The wall face was vegetated, as

seen from Figure 1(d), by taking advantage of openings in

the front part of the L-shaped facing unit.

Figures 5(a) and (b) show the instrumentation to

monitor the wall performance during and after wall

construction, including electric-resistance strain gauges

installed on three selected geogrid layers in the respective

walls, geogrid layers Nos. 5, 13 and 21 in the 16.7 m high

GRS wall in valley 1 and Nos. 3, 13 and 23 in the 21.1 m

high GRS wall in valley 2 (Figures 7(a) and (b)). Ten to

thirteen electric-resistance strain gauges were arranged in

the respective geogrid layers to obtain length-wise distri-

butions. The geogrid tensile strains were evaluated from

outputs of the electric-resistance strain gauges based on

the calibration made by in-air tensile loading tests in the

laboratory, in which the relationships between the outputs

of the electric-resistance strain gauges and the average

tensile strains from tensile deformation for a gauge length

equal to 5 cm were obtained (see Figure 4(a)).

The observed performance of the two GRS walls is

presented in Figures 8 and 9. It may be seen that the

deformation of the walls during construction was very

small (see Figure 5 for the locations of measurements).

The total vertical compression of the backfill during

construction was only 0.3% (the wall in valley 1) and

0.5% (the wall in valley 2) of the respective completed

wall heights. Furthermore, the post-construction residual

deformation of the two walls was negligible. In particular,

the deformation due to a number of heavy rainfall events

that took place after the end of wall construction was

negligible. This very good performance was due largely to

the fact that the reinforced backfill was compacted very

well (Figure 3(b)). It should be noted that the compaction

efficiency is generally higher when the backfill is rein-

forced than when it is not, because lateral yielding of the

backfill when subjected to heavy compaction load is better

restrained when reinforcement is present. It is very likely

that effective drainage systems arranged inside and at the

base of the backfill worked very well. These results,

showing a very high stability of the two walls under static

loading conditions even during heavy rainfalls, indicate

that long-term residual deformation of soil structures can

be restrained effectively by good compaction of high-

quality backfill and arrangement of effective drainage

systems even when reinforced with so-called extensible

reinforcement, such as a polymeric geogrid. On the other

hand, relatively large compression took place during and

after construction of the embankment constructed on the

slope in valley 1 (Figure 5(a)). This was probably due to

the fact that the backfill was not reinforced, the compac-

tion work was on a slope, which was relatively difficult,

and a larger compacted lift (equal to 40 cm) was em-

ployed, despite the use of heavier compaction machines

(18 tonf-class vibratory compactors).

3. TENSILE LOADING TESTS OF
GEOGRIDS

In each of the walls, electric-resistance strain gauges were

attached to three typical geogrid layers using three types

of geogrid, G-100, G-120 and G-150. Table 1 summarises

50 cm
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L-shaped steel mesh facing unit

Figure 6. L-shaped facing unit of galvanized expanded metal

mesh to protect the wall face
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direction
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Figure 7. Installation of electric-resistance strain gauges in

the 21.1 m high GRS wall in valley 2: the connection cables for

data acquisition are extended toward the wall face: (a) general

view (modified from Fujinami et al. 2007); and (b) a close-up
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their ultimate tensile strengths obtained by fast tensile

loading tests at a strain rate of 1.0%/min using 22.4 cm

wide specimens of new product. The design rupture

strengths were obtained by reducing these fast loading

tensile strengths of new product using a creep reduction

factor equal to 1/0.625 ¼ 1.6 (determined on the basis of a

number of creep loading tests, reported by the manufac-

turer). The tensile loading tests were also performed on

geogrid specimens that were retrieved from trial fills

where the backfill in which the geogrid layers had been

installed was compacted in the same way as the actual

construction work of the two walls. The installation

damage factor was confirmed to be essentially equal to

unity based on these tensile loading test results. The

durability reduction factor to account for long-term degra-

dation by negative chemical or biological effects was

taken to be equal to unity, based on results from the

degradation tests performed by the manufacturer and field

conditions at the site, where no serious negative chemical

or biological effects are likely.

Figures 10(a) and (b) show the tensile load–tensile

strain (T–�) relations and time histories of tensile strain

from unconventional load-controlled tensile loading tests

on new products performed by using the apparatus shown

in Figure 4 and the test methods reported by Hirakawa et

al. (2003) and Kongkitkul et al. (2004, 2007a). That is,

sustained loading were performed for 12 h at two tensile

load levels (T) equal to 6.5 and 13 kN/m during otherwise

monotonic loading (ML) at a load rate of 0.0018 kN/m

per min. Creep deformation is noticeable even at these

low tensile load levels, which are considerably below the

respective ultimate tensile strengths (Table 1). The simula-

tions presented in these figures are explained later.

4. GEOGRID TENSILE STRAINS
MEASURED IN THE WALLS

Figures 11(a), (b) and (c) show time histories of the tensile

strain measured in geogrid layer Nos. 5 (G-120), 13

(G-150) and 21 (G-100) in the 16.7 m high GRS wall in
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valley 1. Figures 12(a), (b) and (c) show similar measure-

ments in geogrid layers Nos. 3 (G-150), 13 (G-100) and

23 (G-120) in the 21.1 m high GRS wall in valley 2. The

origin of elapsed time was defined when the respective

geogrid layers were installed. Figures 13 and 14 show the

distributions of geogrid strains at selected moments,

corresponding to Figures 11 and 12. It should be noted

that the locally measured tensile strain values presented in

Figures 11 and 12 are time-dependent due not only to the

viscous property of the geogrid but also the backfill as

well as interactions between them. The following trends of

behaviour may be seen from these figures.

1. The rate of increase of tensile strain was high during

wall construction. The increase at a high rate stopped

when the wall was completed in most of the

monitored geogrid layers.

2. The tensile strain mobilised at the end of wall

construction in the respective geogrid layers was

largest at 2 m back from the wall face in all the

geogrid layers, except for geogrid layer No. 3 (the

lowest layer) in valley 2 (Figure 14(a)), where the

strain was largest at 10 m back from the wall face. In

geogrid layer Nos. 13 and 23 in the wall in valley 2

(Figures 14(b) and (c)), the strains at 4 and 8 m,

respectively, from the wall face were also largest

although they were similar to those at 2 m from the

wall face in the respective layers. This observation

indicates that there was no deep global potential

failure plane as a sign of global unstable behaviour

of these two walls. Considering that the distributions

of strain in the respective geogrid layers were rather

irregular, to capture the general trend of the time-

dependency of strain and force in the geogrid layers,

the average of all the measured values in the

respective geogrid layers was obtained, as shown in

Figures 11 and 12.

3. After the end of wall construction, the geogrid

strains continued increasing at some locations, but

the rate of increase was very low. At the other

locations, the geogrid strain stopped increasing and

at some locations, the geogrid tensile strain even

started to decrease with time. These trends of

behaviour were consistent with those observed in the

PSC tests on geosynthetic-reinforced sand specimens

reported by Kongkitkul et al. (2008a). The general

trend of behaviour of the tensile strain in the geogrid

after the end of wall construction was consistent with

very small or negligible residual deformation of the

walls after the end of construction, as seen from

Figures 8 and 9.

4. The observed geogrid strains were substantially

lower than the strain at rupture. Therefore, the tensile

forces obtained by substituting these strains into the

measured load–strain relations shown in Figure

10(a) were substantially lower than the respective

tensile rupture strengths listed in Table 1.

5. MODELLING OF RATE-DEPENDENT
LOAD–STRAIN BEHAVIOUR OF
GEOGRID

Di Benedetto et al. (2002), Tatsuoka et al. (2002, 2008)

and Kongkitkul et al. (2008c) proposed a non-linear three-

component model to simulate the elasto-viscoplastic

stress–strain behaviour of geomaterial. Hirakawa et al.

(2003) and Kongkitkul et al. (2004, 2007a) modified the

model to simulate the rate-dependent tensile load–tensile

strain behaviour of polymeric geosynthetic reinforcement

(Figure 15) and showed that the model can simulate very

accurately the rate-dependent load–strain behaviours, in-

cluding stress jumps by stepwise changes in the strain

rate, creep strain during sustained loading and stress

relaxation, of many different types of polymeric reinforce-

ment, as typically shown in Figure 4(d). Kongkitkul and

Tatsuoka (2007) and Kongkitkul et al. (2007d), respec-

tively, modified the model to take into account the effects

of ambient temperature and time-dependent degradation

on the load–strain behaviour of polymeric geosynthetic

reinforcement.

According to the model (Figure 15), the tensile load T

at a given irreversible strain, �ir, ([T ](�ir)) is obtained by

adding the viscous component ([T v(�ir, _�ir, hs)](�ir)) to the

inviscid component ([T f (�ir)](�ir)) at the same �ir, while

�
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the tensile strain rate ( _�) by adding the elastic component

_�e to the irreversible component _�ir at the same T, as:

[T ](�ir) ¼ [T f (�ir)](�ir) þ [T v(�ir, _�ir, hs)](�ir) (1a)

_� ¼ _�e þ _�ir (1b)

where hs is the loading history parameter, which is not

necessary for the Isotach viscous property under ML

conditions. Kongkitkul et al. (2008b) reported that the

geogrid made of Aramid fibre, used for the two walls,

exhibits the Isotach viscous property. In that case,

[T v(�ir, _�ir)](�ir) is obtained as:

[T v(�ir, _�ir)](�ir) ¼ [T f (�ir)](�ir) � gv _�irð Þ (2a)

gv _�irð Þ ¼ Æ� � _�ir
�� ��= _�ir0

� �1þb�
(2b)

where gv( _�
ir) is the viscosity function, which is a highly

non-linear function of the irreversible strain rate _�ir; and
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Æ�, b� and _�ir0 are the material constants. Kongkitkul et al.

(2007a, 2008a) showed that Equation 2b, which was

originally proposed by Di Benedetto et al. (1999, 2005) to

simulate creep deformation of sand, is also relevant to

simulate the creep behaviour of geosynthetic reinforcement

after the strain rate becomes very low (see Appendix A for

the details). By analysing the test results of this geogrid

type consisting of Aramid fibre by Hirakawa et al. (2003),

partly shown in Figure 4(c), the parameters Æ� ¼ 0.18,

b� ¼ �0.65 and _�ir0 ¼ 10�6 %/s were obtained. It was found

that these parameters were also relevant to the three types

of Aramid geogrid along which tensile strains were meas-

ured in the two walls. The elastic properties of the three

types of geogrid were determined from the respective T–�
relations immediately after the restart of ML at the end of

sustained loading, as shown in Figure 10(a). The Tf –�
relations (i.e. the reference relations) of the three types of

geogrid, which are the T–� relations when _�ir ¼ 0, were

determined as shown in Figure 10(a). It may be seen that

not only the load–strain relations (Figure 10(a)) but also the

time histories of creep strain (Figure 10(b)) were simulated

very well by the model using these model parameters.

6. ESTIMATION OF GEOGRID TENSILE
FORCES

To obtain the time histories of tensile force of the six

geogrid layers by the non-linear three-component model

(Figure 15), the time histories of respective measured

tensile strains as well as their average in the respective

monitored geogrid layers were fitted by empirical equa-

tions. Figures 16(a) and (b) show the time histories of

tensile strain defined as zero at the end of wall construc-

tion at 2 m back from the wall face in geogrid layer No.

13 (G-150) of the wall in valley 1 and at 10 m back from

the wall face in geogrid layer No. 3 (G-150) of the wall in
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valley 2, respectively. These time histories are typical of

those that exhibited a continuous increase with time

(Figures 11 and 12). To alleviate difficulties in the subse-

quent analysis of the data due to irregular variations with

time in the respective time histories of strain, Equation

3(a) was fitted to the data to obtain smooth time histories,

as shown in Figures 16(a) and (b):

˜� ¼ A1 � 1� e�˜ t= t1ð Þ þ A2 � 1� e�˜ t= t2ð Þ (3a)

_� ¼ @�

@ t
¼ A1 � e�˜ t= t1

t1
þ A2 � e�˜ t= t2

t2
(3b)

where A1, A2, t1 and t2 are constants. Equation 3(b) was

obtained by differentiating Equation 3(a) with respect to

time.

Figure 17(a) (in the full-log plot) shows the time

histories of tensile strain rate at the selected locations of

the three geogrid layers of the wall in valley 1 represented

by Equation 3(b) that was obtained from Equation 3(a)

fitted to the data. Figure 17(b) shows the averaged

relations of the respective layers. Figures 18(a) and (b)

show similar results of the wall in valley 2. It is to be

noted that the averaged value in geogrid layer No. 13 of

the wall in valley 1, the local value at 4 m back from the

wall face in geogrid layer No. 13 and the averaged values

in geogrid layer Nos. 3 and 13 of the wall in valley 2

exhibit negative strain rates, which means that the respec-

tive geogrid strains decreased with time after the end of

wall construction. In all these cases, the absolute value of

geogrid strain rate decreased at a high rate with time. The

respective time histories of tensile strain rate represented

by Equation 3b and shown in Figures 17 and 18 were

extrapolated towards the end of the design life typical for

civil engineering structures (i.e. 50 years) in the analysis

shown below.

The time histories of tensile force of the monitored

geogrids in the two walls were estimated by the non-linear

three-component model from the fitted time histories of

tensile strain rate until the end of observation (i.e., 524

and 774 days, respectively, for the walls in valley 1 and

valley 2). The time histories were then extrapolated to 50

years based on the relations fitted by Equation 3. There-

fore, the effects of the viscous properties of both geogrid

and backfill as well as their interactions were involved in

these extrapolated time histories. Figures 19(a), (b) and (c)

show the relationships between the estimated tensile force

and the measured local tensile strain (fitted by Equation

3a) before and after the end of wall construction at

selected locations in the three monitored geogrid layers in

the wall in valley 1 (see Figure 5(a) for their locations).

Figures 20(a), (b) and (c) show similar relations for the

averaged strains in these geogrid layers (Figure 17(b)).

Similarly, Figures 21(a), (b) and (c) show the local

relations at selected locations in the three monitored

geogrid layers in the wall in valley 2 (see Figure 5(b) for

their locations). Figures 22(a), (b) and (c) show the

relations for the averaged strains in these geogrid layers in

the wall in valley 2 (Figure 18(b)).

The solid curves presented in Figures 19 to 22 show the

T–� relations starting at the origin (0,0) (defined as when

the respective geogrid layers were installed) and obtained

from the measured time histories of tensile strain by

extrapolation to 50 years. The dotted curves represent the

relations if ML had continued even after the end of wall

construction at the strain rate pertaining at the end of the

construction phase. In all the solid curves, immediately

after the end of wall construction, the loading condition

(where _�ir . 0) was maintained. Subsequently, in some

cases, the loading condition continued to the end of 50

years. In some other cases, the neutral state (where

_�ir ¼ 0), which is located on the reference relation for

loading, was then reached. In some cases, the sign of

irreversible strain rate, _�ir, then changed to be negative

and the tensile load–strain behaviour entered into an

unloading branch (where _�ir , 0). The analyses under the

unloading conditions by the three-component model (Fig-

ure 15) were made on the basis of the respective reference

relations for the unloading conditions, which were deter-

mined following the method explained in Appendix B

(Kongkitkul et al. 2004, 2008a).

Figures 19(a) and (b) show the estimated T–� relations

in the two cases where the geogrid was locally most
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severely loaded among those analysed in the wall in valley

1. Figure 21(a) shows a similar case in the wall in valley

2. In these cases, after the end of wall construction, the

tensile strain continued increasing with time at such a

relatively high rate that the geogrid tensile force also

continuously increased with time. It should be noted that,

in valley 1 (Figure 1(c)), a 45 m high sloped embankment

was constructed behind the 16.7 m high GRS wall for a

period of about 9 months starting about 2 months after the

end of wall construction (Figure 8). It seems that the

geogrid tensile strain was somehow increased by the load

from the sloped embankment for some period after the

end of wall construction, unlike the wall in valley 2. The

predicted tensile forces after 50 years were, however, only

about 4.32 and 6.49 kN/m, respectively, for geogrid layer

Nos. 5 and 13 of the wall in valley 1 and about 4.25 kN/m

for geogrid layer No. 3 in the wall in valley 2. These

values are substantially lower than the respective design

ultimate tensile strengths (Table 1). If the geogrid was

damaged when installed in the backfill, then because the

geogrid tensile forces were estimated using model para-

meters determined by laboratory tensile loading tests using

new products, these estimated geogrid tensile forces would

overestimate the true values. It was confirmed, however,

that the installation damage was negligible, although the

conclusion above would not change even if the installation

damage cannot be ignored.

Figures 23, 24 and 25 show the time histories of the

estimated tensile force based on the measured and fitted

tensile strain representing the cases presented in Figures

19 to 22, which are typical of the geogrid behaviour in the

two walls. The time histories of geogrid force when the

strain was assumed to be kept constant after the end of

wall construction (i.e. load relaxation behaviour), and

those when the tensile force was assumed to be kept

constant (i.e. creep behaviour), are also presented for

reference. It can be seen that the actual behaviour was

much more complicated than these two idealised cases.

In the relations plotted in Figures 19(c) and 20(c) (the

wall in valley 1) and Figures 21(c) and 22(c) (the wall in

valley 2), the tensile strain rate increased with time after

the end of wall construction, as in the cases presented in

Figures 19(a) and (b) and Figure 21(a). However, the

estimated T–� relations exhibited first a sudden immediate

decrease in the tensile force, which was followed by a

very slow increase in the tensile force with time. As a

result, the total increase in the geogrid tensile force was

much smaller. Even after 50 years, the estimated tensile
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force was only slightly higher than the value at the end of

wall construction. This trend of post-construction behav-

iour in geogrid layer No. 21 of the wall in valley 1 and

geogrid layer No. 23 in the wall in valley 2 was similar to

the one observed in the PSC tests on small-size geogrid-

reinforced sand specimens reported by Kongkitkul et al.

(2007c). These trends of behaviour can also be clearly

seen from Figures 23 and 24.

On the other hand, as seen from Figure 20(b) (the wall in

valley 1) and Figure 21(b) and Figure 22(a) and (b) (the

wall in valley 2), the geogrid tensile force significantly

decreased with time due to consistently negative strain

rates after the end of wall construction (Figures 17 and 18).

In these cases, the tensile force decreased firstly under the

loading condition (where _�ir . 0), then under the unloading

condition (where _�ir , 0). As a result, it is estimated that

the geogrid tensile force decreased greatly and it is

predicted that this unloading will also continue during

coming many years. This trend of behaviour is similar to

that observed in the PSC tests on large-size geogrid-

reinforced sand specimens reported by Kongkitkul et al.
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(2008a). In these cases, after the end of wall construction,

the geogrid tensile force decreased at a rate that was much

larger than the one that applied when the load-relaxation

took place at a constant strain. Therefore, it is very likely

that creep rupture failure was not likely to take place by the

end of a lifetime equal to 50 years. The analysis presented

above suggests that this estimate is also relevant when the

lifetime is 100 years. As a final remark, as seen from these

figures, when the purely elastic response under the unload-

ing condition is assumed to take place, the decrease in the

tensile force is largely over-estimated. These trends of

behaviour can also be seen from Figure 25.

7. DISCUSSION

Summarising the above, it is very likely that, with the two

high GRS walls, the geogrid tensile force would be kept to

values that were substantially lower than the respective
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design ultimate tensile strengths by the end of a typical

design life, 50 years. This behaviour is consistent with

reports of a number of full-scale geosynthetic wall case

histories by Allen and Bathurst (2002a, b). It should be

noted that the method used to predict the mobilised tensile

load in this study is different from the one used in their

studies. In this study, an elasto-viscoplastic model that can

predict the tensile load–strain relation from the measured

tensile strain for any arbitrary loading history was used.

On the other hand, in their studies, the mobilised tensile

load was obtained by multiplying tensile strains using a

suitably selected time-dependent reinforcement stiffness

obtained from constant load creep tests (Bathurst et al.

2002; Walters et al. 2002). Their approach is applicable

only for monotonically increasing or constant reinforce-

ment load in the wall.

The relevance of the reinforcement force estimated for

a long period after the end of strain observation presented

herein depends on the reliability of both the extrapolated

strains and the three-component model. It should be

admitted that we need further research to fully validate the

above. Even so, we consider that we can learn several

important lessons. A very low increasing rate of estimated

geogrid tensile force, or essentially zero increase or even a

decrease in the estimated tensile force after the end of

wall construction, as described above, is due first to a high

safety factor against tensile rupture of the geogrid (as

discussed later in this section). It is also due to the fact

that not only the load–strain behaviour of polymeric

geogrid reinforcement but also the stress–strain behaviour

of backfill are rate-dependent due to their viscous proper-

ties. The reduction of tensile strain with time in the

geogrid is due to compressive creep strains that take place

in the horizontal direction in the backfill caused by the

tensile force in the reinforcement (Tatsuoka et al. 2004).

The observations and analyses presented in the preceding

sections, as well as the considerations above, indicate that

the possibility of excessive tensile deformation and even-

tual tensile creep rupture of the geogrid arranged in these

two walls by the end of the prescribed design life is

extremely low.

The above-mentioned trend of behaviour can also be

expected with many other geosynthetic-reinforced soil

retaining walls constructed using well-controlled backfill

following similar construction procedures to those de-

scribed in this paper. Bussert and Naciri (2009), among

many others, also reported a number of case histories in

which tensile strains activated in the HDPE geogrid
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reinforcement placed in full-scale GRS retaining walls

increased only at a very low rate, or were kept essentially

constant, or even noticeably decreased, with time after the

end of wall construction. However, in these case histories,

no attempt was made to estimate the time histories of the

geogrid force from measured time histories of the geogrid

strain. The methodology to estimate the time histories of

geogrid force described in this paper can be applied to

other cases such as those referred to above.

The tensile forces that had been activated in the geogrid

and those that would be activated under static loading

conditions by the end of 50 years in the two walls were

much lower than those predicted at the design stage. This

means that the tensile forces that will be activated in the

geogrid when the walls are subjected to design seismic

loads would also be much lower than those predicted at

the design stage. These considerations indicate that the

design of the two walls was much more conservative than

the one identified at the design stage. When an attempt

was made to reduce the conservatism in the current design

method (as usually used in practice and used for the

design of the two walls) to a more relevant level and

further to decrease the required rupture strength of the

new polymeric geosynthetic reinforcement product for use

for a given geosynthetic-reinforced soil retaining wall, two

basic methods were identified. The first is to use a more

realistic (i.e., higher) design shear strength value for the

backfill. Then, using the same stability analysis method

(usually the limit equilibrium-based stability analysis), the

design working load of the geogrid is reduced. In the

design of these two walls, an angle of internal friction

equal to 358 and a cohesion intercept equal to 8.5 kPa,

both under effective stress conditions, were used for the

backfill. These design shear strength parameters of the

backfill were obtained by conservative fitting of a linear

failure envelope to multiple Mohr’s circles of stress at

failure from consolidated drained (CD) triaxial compres-

sion (TC) tests on saturated specimens of the backfill

performed by a consulting firm. The specimens were

obtained by compaction to a degree of compaction Dc for

the modified Proctor equal to 90%, which was the

allowable lower bound adopted in the field compaction

control of the backfill during the construction of these two

walls. These design shear strength parameters (� ¼ 358

and c ¼ 8.5 kPa) are equivalent to a peak friction angle to

the origin, �o ¼ arcsin[(� 91 � � 93)=(� 91 þ � 93)]max, equal to

398 with c ¼ 0 when �93 ¼ 50 kPa. On the other hand,

Figure 26 summarises the relationships between �o and

the degree of compaction Dc for the modified Proctor

obtained from many series of CD TC and plane strain

compression (PSC) tests performed at typical operated

confining pressures in the field (mostly �93 ¼ 50 kPa). The

specimens were made by using a wide variety of sandy

and gravelly backfill actually used in construction pro-

jects. These TC and PSC tests were performed at the

Tokyo University of Science (Hirakawa et al. 2008; Kiyota

et al. 2009). The data from a new series of drained TC

tests at �93 ¼ 50 kPa on specimens produced by compact-

ing the gravelly soil (D50 ¼ 8.1 mm; Uc ¼ 25.6; and

FC ¼ 4.2 %) obtained by removing particles larger than

50.8 mm from the one used to construct these walls

(Figure 2) at the optimum water content (for the modified

Proctor) are included in these data. These TC tests were

performed mainly after the construction of the two walls,

independently of those performed at the design stage. The

specimens during CD TC tests were either at the moist

condition as compacted (i.e., the data points denoted by

symbol 3) or after having been made fully saturated (i.e.,

the data points denoted by symbol +). It may be seen that

the moist specimens are noticeably stronger than the

saturated ones and this is probably due to the effects of

suction. This fact indicates that the walls are more stable

when not fully saturated. However, in the current design

practice of soil structures in Japan, apparent cohesion due

to suction of sandy and gravelly soils is ignored assuming

fully saturated conditions, which was also the case with

these two walls. It may also be seen that the design shear

strength (�o ¼ 398 with c ¼ 0 when �93 ¼ 50 kPa) of the

fully saturated specimens corresponds approximately to

Dc ¼ 85%, which is even lower than the allowable lower

bound (90%) in the field compaction control. On the other

hand, as seen from Figure 3(b), the average values of the

actual Dc values were 98 and 97.5% in the two walls,

which were substantially higher than 85%. This fact
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means that, even when fully saturated, the actual drained

shear strength of the backfill was substantially higher than

the design value. When correcting the CD TC strength for

differences in the grading curve between the gravelly soil

used in the CD TC tests and the one used in the field and

also when using plane strain shear strength in the design,

the difference becomes larger. This analysis indicates that,

without losing a sufficient margin for the safety factors

against ultimate failure and serviceability limit, we can

reduce the conservatism with GRS retaining walls having

well-compacted backfill by using a more realistic design

shear strength that is higher than the standard design shear

strength which is usually used in ordinary design practice.

The second way is to increase the design tensile rupture

strength of a given type of polymeric reinforcement, for

example, by not using a creep reduction factor, as

suggested by Tatsuoka et al. (2004, 2006), Tatsuoka

(2008) and Kongkitkul et al. (2007d). It seems that, in the

design for static loading conditions, it would be prudent to

employ either of the two methods above, not both, at the

current stage of this technology. On the other hand, both

methods are employed in the seismic design of soil

structures including GRS-RWs for railway structures in

Japan (RTRI, 1999, 2007).

The observed geogrid strains and the estimated geogrid

forces indicate that it was rather relevant to assume at

the design stage of these two walls that the tensile forces

in the geogrid layers would be kept constant after the end

of wall construction until the end of the prescribed life

time. This is also because, at the design stage, it was not

possible to predict the manner in which the tensile force

would change with time at different locations in different

geogrid layers. It seems that the manner in which the

tensile force in the geogrid in a given full-scale GRS

structure changes with time after the end of wall

construction depends on the operated safety factor against

the ultimate tensile rupture of the geogrid as well as the

operated safety factor against the ultimate failure of the

GRS structures and how these safety factors change with

time. It is likely that generally the geogrid strain tends to

decrease with time when these safety factors are kept

high or become higher with time or both. In these cases,

the assumption of constant geogrid force during service

by the end of the prescribed life time is conservative.

When the conservatism in the current design method is

reduced (as discussed above), care should be taken to

ensure whether the assumption of constant geogrid force

during service is reasonably conservative. More research

on this issue is needed.

8. CONCLUSIONS

The following conclusions can be derived from the per-

formance of two high geosynthetic-reinforced soil (GRS)

walls constructed as part of airport structures and their

analyses presented in this paper.

1. Two high GRS walls constructed of highly compacted

well-graded gravelly soil, while providing an effective

drainage system exhibited very small deformation

during construction and negligible residual deforma-

tion after the end of wall construction.

2. Corresponding to the above, the increase in the

geogrid strain after the end of wall construction was

generally very small, or even a decrease was observed,

in six monitored geogrid layers in the two walls.

3. The estimated geogrid tensile force based on the

time histories of measured geogrid strain by a non-

linear three-component elasto-viscoplastic model

either increased at a very small rate, or even

decreased with time. It was estimated that, even

when the geogrid tensile force tended to continuously

increase with time, it would be kept to values that

were substantially lower than the respective design

ultimate tensile strengths by the end of a typical

design life, equal to 50 years.
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4. Summarising the above, the possibility of excessive

tensile deformation and tensile creep rupture of the

geogrid by the end of a design life equal to 50 years

is extremely low in these two walls. The analysis

presented in this paper suggests that this estimate is

also relevant when the lifetime is 100 years.

The current design of geosynthetic reinforcement is

based on the force that may be activated in the reinforce-

ment, whereas only strains in the reinforcement arranged

in GRS structures can be measured. Therefore, it is very

necessary to develop a relevant methodology so that time

histories of the force developed in polymeric reinforce-

ment can be estimated from measured time histories of

strain for any arbitrary loading history. The methodology

described in this paper, which was developed to this end,

can be applied to other cases in which time histories of

polymeric reinforcement strain are available and relevant

laboratory tensile tests to determine the model parameters

can be performed.

APPENDIX A: NON-LINEAR THREE-
COMPONENT MODEL FOR
GEOSYNTHETIC REINFORCEMENT

According to Hirakawa et al. (2003) and Kongkitkul et al.

(2004, 2007a), the current value of the viscous tensile load

Tv (when the irreversible strain is equal to �ir) is obtained
as:

[T v](�ir) ¼ Ł(�ir) � [(T v)iso](�ir)

þ [1� Ł(�ir)] � [(T v)TESRA](�ir)

(A1-a)

where:

[(T v)iso](�ir) ¼ [T f (�ir) � gv( _�ir)](�ir) (A1-b)

[(T v)TESRA](�ir) ¼
ð�ir
�¼�ir

1

d(T v)iso½ �(�) � [r1(�ir)]�
ir��

(A1-c)

where: �ir1 is the value of �ir at the start of integration in

Equation A1-c, which is 0.0 in this study. Ł(�ir) in

Equation A1-a is the viscosity type parameter, which may

decrease with �ir. The term r1(�ir) in Equation A1-c

is the decay function, which may also decrease with �ir.
Hirakawa et al. (2003) reported that geogrid made of

Aramid fibre, similar to the one used in this study,

exhibited Isotach viscous behaviour from the start of

tensile loading where T ¼ 0 and �ir ¼ 0 until the rupture

of the geogrid. Therefore, Ł ¼ 1.0 was used and treated

unchanged with changes in the �ir value. Then, [T v](�ir)
(Equation A1-a) becomes the same as [(T v)iso](�ir) (Equa-

tion A1-b).

The term gv( _�
ir) in Equation A1-b is the viscosity

function, for which the following non-linear function has

been proposed for geomaterials (Di Benedetto et al. 2002;

Tatsuoka et al. 2002, 2008; Kongkitkul et al. 2008c):

gv( _�
ir) ¼ Æ � [1� exp f1� (

_�ir
�� ��
_�irr

þ 1)mg] (> 0)

(A2-a)

where Æ, m and _�irr are constants controlling the quantity

of T v for a given _�ir and T f. On the other hand, Di

Benedetto et al. (1999, 2005) proposed the following

function for gv( _�
ir):

gv _�irð Þ ¼ Æ� � _�ir
�� ��= _�ir0

� �1þb�
(A2-b)

where Æ�, b and _�ir0 are constants. Kongkitkul et al.

(2007a) proposed to combine Equations A2-a and A2-b

such that Equation A2-a is activated when the encountered

strain rate is high and Equation A2-b when the strain rate

is low. They used the combined viscosity function in the

simulations of in-air tensile loading tests on geosynthetic

reinforcement, in which sustained loading tests were

performed for 30 days during otherwise ML at a constant

strain rate of 1.0 %/min and the encountered strain rates

spanned from high values to extremely low values. As the

absolute values of strain rate encountered in this study

spanned from low values to very low values, the viscosity

function gv( _�
ir) having the form of Equation A2-b is

appropriate. By back-analysis of the test results on Aramid

fibre that were determined for short-term creep behaviour

(Hirakawa et al. 2003), Æ� ¼ 0.18, b� ¼ �0.65 and

_�ir0 ¼ 10�6 %/s were found relevant. These parameters

were re-confirmed by successful simulations of the tensile

load–strain relations as well as time histories of creep

strain obtained by another series of in-air tensile loading

tests presented in this study (Figures 10(a) and (b)).

APPENDIX B: SIMULATION UNDER
UNLOADING CONDITION

B1. Reference load–strain relation during unloading

Geosynthetic reinforcement exhibits usually substantially

different shapes of tensile load–strain curves during

primary loading and unloading. Then, it becomes neces-

sary to introduce imaginary primary loading and imagin-

ary primary unloading curves, T f ¼ g(�ir) and

T f ¼ �g(��ir), having a shape that is similar to the shape

of actual unloading curve, as illustrated in Figure 27

(Kongkitkul et al. 2004). The shape of these imaginary

functions is substantially different from the shape of the

actual primary loading curve, T f ¼ f (�ir). Unloading and

reloading curves from any arbitrary state are obtained by

scaling these imaginary functions. Two polynomial func-

tions were respectively determined for T f ¼ f (�ir) and

T f ¼ g(�ir) by best fitting of the inferred inviscid tensile

load–irreversible strain curves (at zero irreversible strain

rate) during primary loading and unloading.

The tensile load–strain relations during unloading illu-

strated in Figure 27 are obtained as follows.

1. During the first primary loading from the origin o

(�iro ¼ 0, T f
o ¼ 0) until point a, the tensile load–
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strain curve follows the primary loading curve,

T f ¼ f (�ir).
2. Suppose that loading is reversed at point a. The

unloading curve is obtained by using the known

imaginary primary unloading curve T f ¼ �g(��ir)
and the coordinate at point a, (�ira , T

f
a), as:

T f � T f
a

� �
¼ �g � �ir � �ira

� �� �
(B1-a)

T f
a � T f

b

� T f
c

� � ¼ �ira � �irb
� �irc
� � ¼ 1:0 (B1-b)

where point c (�irc , T
f
c) is the intersection of ‘the

straight line from the origin o which is parallel to the

straight line between points a and b with the

imaginary primary unloading curve T f ¼ �g(��ir).

B2. Isotach-type viscous load component during

unloading

The isotach-type viscous load component, (T v)iso, is posi-

tive during primary loading with positive _�ir and negative

during unloading with negative _�ir. It is natural to assume

that the viscous load component, T v, is zero at the start of

unloading. For these reasons, it was assumed that the

value of (T v)iso during unloading condition is given as:

(T v)iso ¼ T f� � gv _�irð Þ (B2)

where T f� is the inviscid load component used only to

obtain the viscous load component and is obtained as

follows. For the value of (T v)iso at point b during

unloading (Figure 28), T f� is the value of T f at point b�
along the imaginary primary unloading curve that corre-

sponds to point b, obtained as:

T f� ¼ T f
b � T f

a < 0ð Þ (B3)

Therefore, in this case, T f� is negative. Consequently,

(T v)iso during unloading is negative as the result of gv( _�
ir)

is always positive, irrespective of the signs of _�ir.

NOTATIONS

Basic SI units are given in parentheses.

A1, A2 constants of an exponential equation for

geogrid strain (dimensionless)

Inviscid tensile load, T f

Reloading from

bounds for   ,

( ) ( )

b
a

T T gf f
b

ir ir
b� � �ε ε

Imaginary primary loading,

( )T gf ir� ε

Primary loading:

( )T ff ir� ε

Irreversible tensile

strain , εir

Imaginary zone

Imaginary primary unloading,

( )T gf ir� � �ε

Unloading from    bounds for ,

( ) [ ( )]

a b

T T gf f
a

ir ir
a� � � � �ε ε

Note:     || and     ||
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ab oc        oa cb

T T

T

f
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Figure 27. Implementation of different functions to simulate the tensile load–strain relations during unloading (after

Kongkitkul et al. 2004)

T f Imaginary primary loading,

( )T gf ir� ε

Primary loading:

( )T ff ir� ε

Imaginary primary unloading,

( )T gf ir� � �ε

Unloading from

( ) [ ( )]

a

T T gf f
a

ir ir
a� � � � �ε ε

Parallel

εir

b ( , positive)T f
b

b* ( *, negative)T f
b
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Figure 28. Method to obtain the viscous load component

unloading (after Kongkitkul et al. 2004)
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gv viscosity function of a non-linear three-

component model (dimensionless)

hs loading history parameter (dimensionless)

b� parameter of viscosity function

(dimensionless)

c parameter of decay function

(dimensionless)

cŁ parameter of viscosity type function

(dimensionless)

Dc degree of compaction of the backfill

f inviscid tensile load–strain relation during

primary loading (dimensionless)

g inviscid tensile load–strain relation during

unloading (dimensionless)

m parameter of viscosity function

(dimensionless)

T tensile load or force (N/m)

Tf inviscid tensile load of the non-linear

three-component model (N/m)

Tf� inviscid tensile load used to obtain viscous

tensile load during unloading (N/m)

Tv viscous tensile load of the non-linear three-

component model (N/m)

(T v)iso Isotach-type viscous tensile load of the

non-linear three-component model (N/m)

(T v)TESRA TESRA-type viscous tensile load of the

non-linear three-component model (N/m)

r1 decay function of non-linear three-

component model (dimensionless)

ri parameter of decay function

(dimensionless)

rf parameter of decay function

(dimensionless)

t1 constant of an exponential equation for

geogrid strain (dimensionless)

t2 constant of an exponential equation for

geogrid strain (dimensionless)

˜t elapsed time after the end of wall

construction (s)

Æ parameter of viscosity function

(dimensionless)

Æ� parameter of viscosity function

(dimensionless)

� tensile strain of geogrid (dimensionless)

�ir irreversible tensile strain of geogrid

(dimensionless)

�ir1 irreversible tensile strain at the start of

integration (dimensionless)

�irr1 parameter of decay function

(dimensionless)

�irŁ parameter of viscosity type function

(dimensionless)

_� tensile strain rate (s�1)

_�e elastic strain rate (s�1)

_�ir irreversible strain rate (s�1)

_�irr parameter of viscosity function (s�1)

_�ir0 parameter of viscosity function (s�1)

˜� tensile strain increment of geogrid after the

end of wall construction (dimensionless)

Ł viscosity type function (dimensionless)

Łini parameter of viscosity type function

(dimensionless)

Łend parameter of viscosity type function

(dimensionless)

�o angle of internal friction to the origin (8)

ABBREVIATIONS

CD consolidated drained

GRS geosynthetic-reinforced soil

HDPE high-density polyethylene

ML monotonic loading

PSC plane strain compression

TC triaxial compression
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